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1. INTRODUCTION 

Stokes [1] has formulated the theory of couple-stress fluid. One of the applications of couple-stress fluid is its use in study of 

mechanisms of lubrication of Synovial fluids. The synovial fluid has been modeled as a couple-stress fluid in human joints by 

Walicki and Walicka [7]. 

There is a large class of processes which can be considered from the mathematical point of view as the motion of liquid 

between two parallel disks, moving towards each other or in opposite directions with a constant velocity. These include such 

processes as the motion of liquid through a hydraulic pump, and the motion of underground water can also be described with a 

help of the current model. In fig.1, these two applications are presented. It should be noted that in spite of different types of 

hydro dynamical problem at first sight, the mathematical descriptions are the same. So it is possible to describe the water 

motion in a hydraulic pump (when impermeable disks are moving toward or apart each other) similarly to the motion of 

underground water (when permeable disks are fixed). The second case refers to water motion through porous media. These 

problems are interesting because some of their solution analytically obtained, can be confirmed by experiments. 

Suppose, two parallel disks placed in water and start moving towards each other or in opposite directions, assuming the size of 

the disks to be much larger than the distance between them. Even with a qualitative assessment we can see that when the disks 

are approaching each other the effort required is smaller than that for separation when the disks are moving apart. This can be 

explained by the different character of the liquid motion. When the disks are approaching it is potential: when the disks are 

moving apart it is rotational. 

This process deals with a description of the types of possible instability of such motion. Craik & Criminale [2] described a 

procedure for finding class of exact solutions of the Navier-Stokes equations. These solutions consist of a ‘basic flow’ with 

spatially uniform rates of strain and a ‘disturbance’ of a planar form: the disturbance is continuously distorted by the basic 

flow but nevertheless remains of planar form at all times. This is similar to the formulation, given by Lagnado, Phan-Thien & 

Leal (1984), but was restricted to two-dimensional basic flows and the authors were unnoticed that their linearized 

approximation is in fact an exact solution for single plane-wave modes. 

The aims of this chapter are presented in two parts. The first is to generalize the results of Craik [3] in a case of plane-wave 

superposition. The second is to find the possible forms of the jet solutions which are generated as a result of the instability 

development. 

 

2. MATHEMATICAL FORMULATION 

Consider the motion of viscous incompressible couple stress fluid induced by two parallel disks moving towards each other, in 

this case where 
h l

(where
h

 is the distance between the disks and 
l

is the length of the disks). Let us assume that the 

horizontal velocity does not depend on the vertical coordinate, whereas the vertical velocity depends linearly on the distance 

between the disks. 
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Figure: 1 The parallel disks are moving to and fro with the velocity q 

 

 In this case the Navier-Stokes equations have the following form 
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t x y y x y x y
 
          
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where   is the kinematic viscosity, 


 is the couple stress fluid parameter and the velocity components are represented as  
2 2( , , ) ( , , ) 2 ( , , ) 2u u x y t v v x y t w qz p p x y t q z     

 (2.4) 

Therefore the above equation becomes 
2

2 2 2 2

2 2 2 2

u v
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t x x y y x y x y

  
     

           
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Where


is the vorticity given by   

u v

y x


 
 

   

 

3. METHOD OF ANALYSIS 

For an analysis let us consider the potential component from the horizontal components of the velocity and introduce the flow 

function  

u q x
y


 

  (3.1) 

v q y
x


 

  (3.2) 

where 


is the stream function. Now continuity equation (2.1) is satisfied identically and momentum equation (2.5), after 

elimination of the pressure and introduction of the vorticity
u 

, will give the equations of motion in the following 

form: 

     

2 2
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where 
{ , } 

denotes the Poisson brackets: 
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x y y x
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     (3.4) 

 ……………………………………………………….. 

……………………………………………………….. 

 ……………………………………………………….. 

 ……………………………………………………….. 

 ……………………………………………………….. 

 ……………………………………………………….. 

 ……………………………………………………….. 

 

l 

h 

q 

q 



 Kempe Gowda M 013 

One of the solution of the equation (3.3) is
0 

, which corresponds to liquid potential motion, known as the motion near 

the stagnation point (another solution for 


 is given in section IV). Following the work of Craik [3], to investigate the 

stability of this solution let us consider the periodical one-dimensional perturbation


. This perturbation is expressed by the 

following equation.  

ˆ       
 

2( ) ( )cos( ( ) )k t A t k t x 
 (3.5) 

To analyze the change of the vorticity in the course of time we put the stream function 


 (3.5) into (3.3). That is 
2
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    
Comparing the coefficients with same x-powers to obtain the following system of nonlinear equations: 

( )
dk

q k t
dt

 
 (3.6) 

2 42 ( ) ( ) ( ) ( ) ( )
dA

qA t k t A t k t A t
dt

    
 (3.7) 

By equation (3.6), we get  

( ) (0) qtk t k e
 (3.8) 

Using this in equation (3.7), we get 

   
2 4

2 4(0) (0)
( ) (0)exp 2 1 1

2 4
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A t A qt e e
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   (3.9) 

where 
(0), (0)k A

are constants, determining the amplitude and wavelength at the initial point of time. The sign of 
q

in 

equation (3.9) determines the stability of the solution
0 

. When 
0q 

the solution is stable, the amplitude 
( )A t

 is 

decreasing: otherwise the solution is unstable; the amplitude 
( )A t

 is increasing however, for 
0q 

 the solution is unstable 

only until 

2

2

81

2 2 (0)

q
t Ln

q k

  



   
  

 
 after which the amplitude decreases rapidly, owing to dissipation.  

 

4. RESULTS AND DISCUSSIONS 

4.1 Stability analysis 

Let us consider the case when the flow function perturbation has the following form 

1 2
11 12 21 222 2

1 2
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k t x k t y k t x k t y
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 (4.1)  

We put the stream function 


 and comparing the coefficients of 11 12 21 22cos( ), cos( ),k x k y k x k y 
 

11 12sin( )x k x k y
, 21 22sin( )x k x k y

 11 12 21 22sin( ) & sin( )y k x k y y k x k y 
 from equation (3.3) we get 
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Now
 2 2 2 2 2 2 2 2 4 4 4 2 2 2 4 4 4

1 11 12 11 12 1 1 1 2 2 2 2(0) (0) (0) , (0) , (0) , (0) ,qt qt qt qt qtk k k k k e k e k k e k k e k k e           
 (4.8) 

Substituting these in the equation (4.2) we get 

2 2 4 41
1 1

1

2 (0) (0)qt qtdA
q k e k e dt

A
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Solving this we get 
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In general,  

Let us consider the case when the flow function perturbation has the following form                    

1 22
1

( )
cos( ( ) ( ) )
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N
i

i i

i i
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k t x k t y
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
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Provided that 
2 2 2

1 2i ik k k i  
 

For 
0,q 

the solution is stable, with both the amplitude
( )A t

 and the wave number 
( )k t

decreasing in the course of time. 

And for 
0,q 

 the solution is unstable. However the amplitude increases until  
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q
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After which owing to dissipation it decreases rapidly. The wave number 
( )k t

 increases in the course of time. The new and 

interesting fact which has been discovered in the course of this research is that the wave number
( )k t

, corresponding to the 

time 
2 4

1

1

2 (0) (0)

N

i

q
t Ln

q k k 

 
  

 


 is not dependent on the initial conditions and is equal to

2 4

2

q
k

  



  


. 

It should be noted that in each of the cases investigated 
0q 

corresponds to the situation when the disks are moving 

towards each other and 
0q 

to the situation when the disks are moving apart. 

Note that if in equations (4.10) & (4.11) with
1N 

, the results obtained by Craik [3] are retrieved. This case corresponds to a 

perturbation in a form of one plane wave. The case when 
1N 

corresponds to plane-wave superposition, which can (for 

special conditions for wave number and amplitude (Chandrasekhar 1997)) reduce to the appearance of different space 

structures. 

Figures 2, 3, 4 and 5 give the variations of amplitude with respect to time as follows  

(i) If the disks are moving apart the incompressible couple stress fluid is unstable up to the certain time, but the amplitude 

value of instable will reduces by the increase of couple stress parameter
( )

. If the disks are moving towards each other the 

couple stress fluid is stable with both amplitude and wave number at all time. 

(ii) With the increase of kinematic viscosity


, in the case of disks moving apart the amplitude value of instability decreases. 

This is due to the increase in the amplitude and wave number.  

(iii) In the case of increase in the velocity of the disks in moving apart, the amplitude value of instable will also increases. 

(iv) But in the case of the disks are moving towards each other, the flow is stable with the variation of all the parameters. 

 

4.2    Stationary solutions in the form of jets   

The solution
0 

, corresponding to the liquid motion near a stagnation point, has been considered. We also find and 

examine other situations of stationary solutions, such as jets. Consider the flow function in the following form: 

( ) ( )xF y y  
 (4.12) 

Substituting equation (4.12) into equation (3.3) it takes the following form  
2(2 )x y y x y xq y x                  

 (4.13) 

And since   

( ) ( )x F y y   
 (4.14) 

Equation (4.13) can be rewritten as  
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[ ] [ ] [2 2 ] [ ] [ ]v v vi vi

cF xF xF F q xF xyF y xF xF K xF                             
 (4.15) 

where a prime denotes a derivative with respect to the argument (here y) and a superscripts denotes the derivatives. Equating 

groups of terms with the same x powers it is possible to obtain the following system: 

[3 ] v viFF F F q F yF F F           
 (4.16) 

[2 ] v viF F q y               
 (4.17) 

We consider the particular solution of equation (4.16) as
F a y

. In this case (4.17) will take the following form: 

(2 ) v viay q y          
 (4.18) 

After some mathematical transformations and integrating twice, we obtain the following equation. 

( ) 2v a q y a         
 (4.19) 

Equation (4.19) is a fourth order differential equation, for
0 

 the differential equation has the form of Hermit’s differential 

equation when two conditions are satisfied: 
2

a q






and 

a

q  is non-negative integer. The solutions of this equation have 

the following form: 

2exp
(3 )

n

n

d q
A y

dy n




  
   

    (4.20) 

where the relation between 
a

 and 
q

 is 

1
, [0, ]

3

n
a q n

n


   

  (4.21) 

Thus the solution of equation (3.3) can be written as  

21
exp

3 (3 )

n

n

n d q
qxy A y

n dx n




  
     

     (4.22) 

In equation (4.22), the first term denotes the liquid motion corresponding to the potential flow component and the second term 

denotes (represents) the jet behavior corresponds to non-potential flow component. When  
0,q  0,n  0, 

 it is 

observed that, the second term approaches zero for
y 

. 

 

5. CONCLUSION 

In this investigation, it is found that, if the disks are moving apart, the incompressible couple stress fluid is unstable up to 

certain time, and then it is stable after words. This is because of the wave number increases in the course of time. But in case 

of disks are moving towards each other the couple stress fluid is stable with both the amplitude and the wave number. 
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